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Abstract

CHATR is a corpus-based method for producing speech synthesis, without signal processing, by se-
lecting appropriate speech segments according to a Gestalt labeling which annotates prosodic as well
as phonemic influences on the speech waveform. From an engineering point-of-view, the synthesiser
is minimal, little more than an indexing device, but the labeling of speech variation m the natural
data, rather than modeling it in the synthesiser, has enabled a generic approach to synthesis which
easily adapts to new languages and to new speakers with little change to the basic algorithms. This
paper describes seven stages of CHATR process-sing of a speech corpus for concatenative synthesis.
They include recording, analyzing, encoding, training, predicting, selecting, and finally synthesising, or
recreating novel speech using the voice of the corpus speaker according to parameters learnt during the

analysis of the corpus.
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Figure 2: CHATR as part of a speech franslation sys-
tem. (SR.: speech recognition, MT: machine ¢ranslation,
SS: speech synthesis). Prosody processing is used for
both the extraction and generation of speaking-style in-
formation.

1 Introduction

The speech synthesis system CHATR [1, 2, 3] was
developed as a voice-creation module for an interpret-
ing telecommunications system. It serves as a research
workbench for corpus-based speech processing and is be-
ing used to test theories of a Gestalt description of speech
and prosodic integration.

CHATR is not designed to be a text-to-speech con-
verter, or reading-machine, and works best with anno-
tated text as input in order to produce natural-sounding
speech. This annotation information can be obfained
from the input speech by prosodic extraction in com-
junction with speech recognition and cross-language fea-
ture mapping when necessary (see figure 2). CHATR is
however required to model the characteristics of human
conversational speech, and must therefore synthesise not
just intelligible speech, but also human-sounding speech,
including many of the non-speech sounds, such as laughs
etc., that are frequent in human spoken communication.
Figure 3 illustrates its usage in a translation system,
where the text of an utterance is accompanied by in-
formation about the speaker’s characteristics and about
the desired speaking style and meaning.

1.1

CHATR speech synthesis starts and ends with the speech
signal. In order to produce a high-definition rendition
of any given input utterance, we need a large corpus
of recorded speech samples from which to select small
waveform segments for concatenation. The coverage and
labelling of these corpora govern the quality of the result-
ing synthesis [7, 8]. For this reason, prosodic extraction
and labelling are integral and essential components of
the speech synthesis generation process.

incorporating prosody

1.2 evolution from v-talk

CHATR extends v~talk [9, 10, 11] which in turn extended
early concatenative synthesis [5, 6], adopting v-talk’s
large-corpus speech unit database approach but incor-
porating prosodic information as an additional selection
criterion, rather than leaving prosodic modification as an
after-process. A significant improvement in voice qual-
ity is gained by this Gestalt approach to speech segment
description, but at the cost of a large increase in the
amount of source data required to cover the necessary
prosodic variation.

The second main difference from v-talk concerns the
type of speech corpus used for source segments. The -
talk system employed a database of 5000 isolated words
to provide coverage of all the likely phone combinations
expected to occur in the synthesis of Japanese. However,
we found that the voice quality resulting from the (prob-
ably very boring) task of reading these words resulted
in less-than-natural voice quality. Consequently, we now
use corpora of more contiguous speech and achieve phone-
mic and prosedic balance by over-recording and then re-
ducing the database to maximise coverage.

Speech-synthesls component system
speaker
characteristies
text to be S
spoken by enriched
the speech o | Inputfor
synthesiser the speech
synthestser
prosodic
patterns
of the input
speech

Figure 3: Enriched input for speech synthesis in a speech
translation system where information is available about
the characteristics of the input speaker and about the
speaking style and prosodic characteristics of the input
speech.

2 Corpus-based processing

Figure 1 summarizes the data flows in CHATR. It shows
that processing (illustrated here in the form of pipes) oc-
curs at two main stages: in the initial (off-line) database
analysis and encoding stage, to provide index-tables and
prosodic knowledge-bases, and in the subsequent (on-
line) synthesis stage, for prosody prediction and unit se-
lection. These ‘pipes’ function as two-way data process-
ing devices, storing encoded representations of embedded
knowledge (as neural nets, regression coefficients, or clas-



sification trees) and retrieving closest approximations to
target representations by predicting their characteristics
and identifying the waveform segments.

In the off-line stage, we start with a speech corpus
and its related orthographic transcription and then pro-
cess the speech to obtain phonemic alignment and prosodic
information for each phonemic segment thus defined.
This provides the raw material for db_make, a set of pro-
grams which produce the index that defines the speech
data and allows retrieval of individual segments in an or-
der appropriate for concatenation into a novel utterance.

Because the speech database contains information
about not just the speaker, but also the speaking style,
the dialect, and the language, we can use the features de-
rived from the text as independent variables in a statisti-
cal learning procedure (classification and recursion trees
are perhaps the most convenient) and the values derived
from the associated speech data as dependent variables
for training, in order to learn the characteristics which
we will later be required to predict when deciding op-
timal parameters for synthesis. Thus the speech corpus
itself provides a knowledge-base for the synthesis as well
as providing a data-base of speech units.

3 Stages of CHATR processing

This section describes the seven stages of corpus-based

speech processing required for CHATR synthesis, sum-

marizes our present understanding of the component tech-
nologies, and outlines plans for future work. The stages

of processing include recording, analysis, encoding, train-

ing, predicting, selecting, and synthesising. The corpus-

based approach has enabled a shift of knowledge out of

the synthesiser apparatus and into the data, resulting

in large, information-rich source databases which are ac-

cessed by small index-based search engines. The synthe-

sis process has thus become largely language-independent,
but is also speaker- and speaking-style dependent, re-

quiring different databases for each speaker and/or style.

Because the processes are entirely data-driven, the gen-

eration of new speaker databases requires little external

knowledge, and is readily replicable for other speakers

and languages.

3.1

Since CHATR uses segments of raw unprocessed speech
waveform for synthesis units, the quality of the speech
database is critical to the quality of the synthesis. It
is not important that the recording be of high techni-
cal quality, and relatively stationary background noises
such as tape hiss may have little effect as long as they
concatenate well without noticeable discontinuities. The
most important feature for a speech corpus to be used
as a source database for CHATR is that it is limited in
the range of intonational variation and that it includes
a representative coverage of the sound combinations for

recording

Figure 4: Plot showing bi-phone distributions in a
million-word corpus of phonemically-transcribed English
text.

the language and for the desired synthesis task.

Early experiments using phonetically-balanced sets
of (5000) words or (503) sentences resulted in speech that
was stilted and lacked natural prosodic variation. More
recently, after experimenting with spontaneous speech
corpora and commercially-recorded cassette-books, we
prefer to use contiguous texts such as short stories, di-
alogues, or contiguous passages that are familiar to the
reader and that encourage more expressive voice quality
and prosodic variation.

The question of phonemic balance is not one that
can be solved mathematically. We can compute the pos-
sible phone combinations for a given language and de-
sign texts that ensure flat coverage, but this does not
take into account the frequencies of occurrence in the
daily language and the fact that the more commonly
used sequences of sounds can undergo particular articu-
latory changes through familiarity. Furthermore, explic-
itly designed corpora can result in a surplus of ‘unused’
or redundant examples, at the expense of insufficient to-
kens (and variety) of the commonly occurring combina-
tions which are likely to be more fluently produced. A
recent paper [17] reported more than 80 different pro-
nunciations for the word ‘and’ in a corpus of English,
but probably fewer than ten of these would have been
predicted by rule. By proportionally representing such
sound sequences in the source database, the likelihood of
selecting a contextually appropriate variant for synthesis
becomes higher.

A forty-minute CHATR database for an English speaker
(nes) contains 35,880 triphones, which can be divided
into 8,813 groups that differ acoustically from one an-
other. Approximately 45% of all triphones in this database
occur only once, or 0.000028 percent of the time. Most
prosodically distinct triphones occur very infrequently,



Figure 5: Plot showing bi-phone distributions in a 20-
minuet single speaker database of English speech. (the
differénces are detailed in figure 6

and among the 35880 triphones in this speaker database,
34,576 are unique. It is interesting to note that the com-
bination of phonemes ”ax”, "n” and ”d” (the word ‘and’)
is among the most frequent.

However, if we consider biphone coverage instead, the
same database contains 35,065 instances, of which only
1,391 are unique. Applying a similar analysis to a much
larger corpus, we find that the number of unique bi-
phones appears to saturate at approximately 2,200. The
question we must ask is: which biphones occur at what
frequencies in speech in general, or in a given task, and
what are the features that contribute to their perceptible
acoustic variance?

Given a set of 56 unique phonemes 3,136 combina-
tions are theoretically possible, but they do not all oc-
cur naturally. Figure 4 shows biphone frequencies for
a very large text corpus, and figure 5 shows a similar
distribution for one speaker’s data. The axes represent
phonemes sorted in order of increasing frequency of oc-
currence in the text. It is of interest to see how flat
the graph is over much of its surface; approximately a
third of the possible biphones occur with some regular-
ity, and a small number occur very frequently. CHATR
should have enough tokens of these regularly occurring
sequences that they can be fluently and variably repro-
duced, preferably including quin-phone context, leaving
the unusual combinations to be accounted for by even
single phone concatenation, on the fground thateven hu-
man speakers ocasioally have difficulty pronouncing the
rare combinations. This is the ‘non-uniform unit’ ap-
proach.

Figure 6 shows the differences between a single-speaker
corpus and the large-text distributions, which we take
to define the language. When collecting speech data, we
aim to reproduce the observed frequencies (smoothing

Figure 6: Plot showing difference in bi-phone distribu-
tions between a single-speaker (forty-minute) corpus and
s million-word corpus of English speech.

the difference) rather than ensure a uniform coverage of
the phoneme space.

3.2 analysis

When the database has been recorded, and the original
text is available, phonemic and prosodic labelling can
be performed to produce an index into the speech. Cur-
rently we use HMM technology to perform a forced align-
ment of the speech to the phoneme labels that have been
predicted from the text using the preprocessing compo-
nent of the synthesiser. As an alternative, encouraging
results have also been found for DTW-based alignment
[16], using the speech waveforms generated by CHATR,
from a similar speaker’s speech data, to correspond to
each sentence in the corpus and then transferring the
phone labels after the alignment differences have been
minimised.

Similar techniques have also proved successful for
prosodic labelling, using multiple transcriptions gener-
ated from and constrained by the text, and then select-
ing the one which best fits the observed prosody of the
corpus utterance. We use ToBI transcription [14, 15] to
specify the prosody and have found that good approxi-
mations can be fitted to the observed contours with this
system.

This illustrates the cyclic nature of CHATR. process-
ing described in figure 1. The labels used to transcribe
the data are generated by the system so the training
is self-contained and errors arising from mis-match are
minimised. Starting from known facts about the lan-
guage, we bootstrap the labelling and train similar mod-
els for the current database. Because our task is ‘closed’
we can refine the models iteratively to fit the data.



3.3 encoding

The data that has been produced from analysis of the
speech corpus now has to be encoded to create an index
for the retrieval of appropriate speech segments at syn-
thesis time. The phone labels that were generated by
the dictionary are converted into phonetically universal
feature bundles, representing place, manner and style
of articulation, and non-speech sounds such as laughs,
sniffs, noisy breaths, etc., are similarly noted.

The prosodic characteristics extracted as Fy values
in Hz, or as durations in milliseconds, RMS power etc.,
are normalised by z-score transform to produce tables
of speaker-specific phone-based means and durations for
each feature, leaving the measured values to be expressed
as excursion in standard deviation units from a zero
mean. By this transform, we can pool data across simi-
lar speakers to increase the size of the corpora for train-
ing language models, and can use observed prosodic tar-
gets for objective testing measures (test_seg, see below)
against real speech across different databasges.

Database compression is not essential, but we can re-
duce the number of units in the database by using redun-
dancy measures, and further reduce disk space by wave-
form compression. MPEG?2 encoding offers very high
compression ratios and includes perceptual masking of
the speech waveform which helps sharpen the objective
measures, such as cepstral distance, which are used in
selection and database reduction.

Although still experimental, we employ test_seg (i.e.,
excluding each sentence in turn from the database and
taking its phone sequence with values for pitch, power,
and duration, etc., as prediction targets for synthesis
from the remaining speech data) to compare the close-
ness of the approximation using objective distance mea-
sures. If an utterance in the corpus can be closely repli-
cated using other speech segments from the same corpus,
then the speech information it contains can be consid-
ered redundant. The closer the replication the more the
redundancy, and although a degree of redundancy is de-
sirable in a corpus for synthesis, to ensure sufficient ‘nat-
ural’ variation, if size is a constraint then some pruning
may be preferred.

3.4 training

Training of the speech corpus for unit selection was de-
seribed algorithmically in [3], so we can summarise briefly
here. We need to overcome the problem of sparcity in
any given database, and to do this we must learn which
features contribute most towards the selection of an ap-
propriate unit for a given target context. With this in-
formation, we can then select from candidates according
to their closeness in the feature space, to find an suitable
alternative context when the ideal unit is missing from
the database.

The procedure is as follows: for each segment in the
speech corpus, we use it as a target and list all suit-

able candidate segments (sorted by closeness according
to physical measures of cepstral distance, duration and
pitch). The statistical relation between the features used
to describe the segment and the ranking of the candi-
dates is learnt by the model and generalised for ail phone
types in each context type.

Clearly, the choice of features used to describe the
phones and their contexts will determine the quality of
the subsequent predictions, so the determination of fea-
tures that best describe the speech is a matter of contin-
uing research.

3.5 predicting

For prosodic prediction we have used simple linear re-
gression and neural networks in the past, but our current
training predominently uses tree-based methods. Suit-
able selection and grouping of independent variables is
the key to successful prediction, and much work has
been devoted to determining optimal feature combina-
tions for first predicting ToBI labels from text Input (not
needed when the text is annotated) and then for predict-
ing prosodic contours for duration, Fy, and power, based
on the ToBI sequence.

The Chatr principle is to cut a prosodic image (not
separating prosodic and segmental material, since both

are produced under the control of the same multi-parameters)

into pieces like a puzzle, and then to rebuild the puzzle
with pieces from the database. In spite of often selecting
units from less than ideal segmental and prosodic con-
texts, CHATR’s generated speech can often be perceived
as natural or well-formed. One underlying hypothesis
that explains the efficiency of this method is that of the
Gestalt functioning of speech. If the perception is pro-
cessed appropriately, even when some segments of the
speech are missing or badly selected, the global contours
will still be identified because of ‘master segments’ which
are informationally heavy (since global perception is not
linear: information is not shared on equivalent parts).
However, if these master pieces are missing, then the
perception process fails.

Proximity to a boundary or to a tonal accent will
result in significant differences in the manner of phona-
tion of the speech segment. These are better captured
by adequate description of the higher-level contributing
context than by lower-level fine-phonetic labelling. It is
therefore very important that the prosodic environment
be well described in order to select a unit sequence for
concatenation and synthesis.

3.6

Unit selection requires a compronﬁse. It is rare (and
fortunate) for a target sequence to be found easily in the
database, so instead we rank candidate units according
to two measures of closeness of fit. They must match
acoustic and prosodic target trajectories and also ensure
smoothness of join between a.\djacent units.

selecting



This selection is made more difficult by the fact that
while some discontinuities are more apparent to the ear
than to physical measures, the ear can also be insensitive
to some other kinds of mismatch. For example, phase
differences and some power differences that are obvious
to the eye when examining the speech waveform may
pass unobserved when listening. A perceptually-based
measure is required here, but this too is work in progress
[12, 13).

Improvements have been found from the use of lo-
cally sensitive selection weights, changing in sensitivity
according to their position and context in the utterance,
pegging the target cost high in areas of prosodic change
and perceptual sensitivity (such as at boundaries and
on accents) while freeing it during the intermediate se-
quences. This has resulted in more freedom for smooth
joins and tighter control at perceptually-relevant points
than would otherwise have been possible, but requires
difficult training.

3.7

Waveform concatenation is currently the simplest part
of CHATR, as the raw waveform segments pointed to by
the index for the selected candidates are simply concate-
nated and sent to the audio buffer, but it is at this point
that post-modification could be performed to improve
the prosodic or acoustic characteristics in the case of in-
adequate units. We have experimented with morphing,
ARX resynthesis, PSOLA, and STRAIGHT waveform
processing, but all have produced such degradation as
to be as disruptive as the discontinuities they aim to re-
pair. Work continues in this area, and as database size
increases we may find that signal processing applied to
correct the smaller discontinuities will be less disturbing.
on the other hand, the smaller discontinuities may then
be considered satisfactory without any signal processing.

synthesising

4 Emotional speech

The next major area of speech research for CHATR must
concern the expression of emotion in speech. While it
is rare for a text-to-speech synthesiser to express emo-
tion, it may be essential for a conversation system to
produce appropriate renditions of the input. Too fast a
speaking style, and the percept can be one of anger or
annoyance. Too mmch variation in the fundamental fre-
quency, and the percept may be one of over-excitement.
Humans are very sensitive to such prosodic and voice-
quality changes, and as the synthesis approaches human-
like quality, the judgments and reactions of the listener
become more critical. Information is parsed as if it were
intentional, as it would be with a human speaker, and
false impressions can be given.

With this in mind, we have collected three corpora of
emotionally marked speech and are studying the acous-
tic and prosodic correlates of anger, joy, and sadness,

speaker
database

recording synthesised speech

synthesis analysis
selection encoding
prédiction training

Figure 7: Stages of speech processing in CHATR,

so that when the corpora are merged a measure will be
found that enables the labelling and appropriate selec-
tion of units according to emotional as well as phonemic
and prosodic characteristics. Tests have shown that even
semantically neutral sentences synthesised from the dif-
ferent databases are easily recognized for the underlying
emotion [18, 19].

5 Future work

Database processing is essential to efficient concatena-
tive synthesis, and the labeling, analysis, and annotation
of speech corpora will continue to be the main core of
CHATR. research. From a scientific viewpoint, we must
focus on determining the features that control variation
in speech. in addition to the present segmental and
prosodic labeling, there is a need for phonation-style la-
beling that will help identify speakers’ emotional states
and speaking styles.

From an engineering viewpoint, the search for a non-
disruptive signal processing technique must be contin-
ued so that data size can be reduced and prosodic and
spectral discontinuities can be repaired. The automatic
collection and annotation of speech corpora is also be-
ing actively researched, but there is a need for a good

perceptually-based measure of closeness between two speech

segments if this work is to really succeed. With such a
measure, optimization of the weights and pruning of the
speech database could be performed automatically and
at a higher standard than at present.

There is still a need for human checking of segmental
and prosodic labels, and this can be an expensive stage
in creation of a new speech database. :



6 Conclusion

This research initially set out to answer one question: if
we remove the conventional constraints on speech syn-
thesisers, such as speed of processing, size of database,
etc., then what other limitations will remain to prevent
natural-sounding speech synthesis? During the period
of our research, the physical limitations on processing
speed and memory size have been more than overcome
by advances in the hardware.

We have shown that given enough units and with
appropriate prosodic specification, we can produce syn-
thetic speech that can be almost indistinguishable from
human speech, but we have also found that coverage of
the database is the most important limitation to consis-
tent high quality.

No method of signal processing that we have yet tried
has been free of damaging effects on the naturalness of
the raw speech recording, so if we are to develop CHATR
further, then work must be addressed to database design
so that optimal coverage of all perceptually significant
prosodic and spectral variations can be achieved.

Since there is such a great range of speaking styles
and emotions, and since their effects on the signal qual-
ity are considerable, and particularly noticeable in high
quality recordings (16-bit, 48kHz sampling rate), then a
trade-off is apparent. As with speech recognition tech-
nology, best quality can be achieved if we constrain the
domain. We can achieve flexible synthesis if we accept a
loss in definition or a degradation in voice quality, or we
can achieve high-quality synthesis if we accept a limita-
tion on the domain of application.

It is my personal belief that general-purpose read-
ing rmachines are of limited use, and that customized
domain-specific synthesis will find many applications in
the coming years. If this is the case, then we should work
to make data collection and annotation easier and more
efficient. In the short-term, this may offer quicker access
to high-quality synthesis than parametric or rule-based
approaches. A strong scientific understanding of speech
must underlie synthesis research, but for the personal-
ization of synthesis systems it may be better to apply
that knowledge to the analysis and labelling of corpora
rather than to the engineering of speech waveforms, for
the amount of information that is present in even the
briefest utterance can surely not be modeled by rule, it
can only be stored and reproduced,
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Figure 1: Flow diagram showing CHATR’s corpus processing.




